Exercise 10

Consider the equation $a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=0$, where a, b are nonzero constants.
(a) What is the equation saying about the directional derivative of u ?
(b) Determine the characteristic curves.
(c) Solve the equation using the method of characteristic curves.

Solution

Notice that the left side can be written as the dot product of two vectors, $\langle a, b\rangle$ and $\left\langle\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right\rangle$.

$$
\begin{gathered}
a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=0 \\
\langle a, b\rangle \cdot\left\langle\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right\rangle=0
\end{gathered}
$$

The PDE says that the directional derivative of u in the direction of $\langle a, b\rangle$ is zero at any point. This means u varies in the direction perpendicular to $\langle a, b\rangle$, that is, in the direction of $\langle b,-a\rangle$.

$$
u(x, y)=f(b x-a y)
$$

The differential of a two-dimensional function $g=g(x, y)$ is given by

$$
d g=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y
$$

Dividing both sides by $d x$ yields the fundamental relationship between the total derivative of g and its partial derivatives.

$$
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\frac{d y}{d x} \frac{\partial g}{\partial y}
$$

Comparing this to the PDE,

$$
\frac{\partial u}{\partial x}+\frac{b}{a} \frac{\partial u}{\partial y}=0,
$$

we see that along the (characteristic) curves in the $x y$-plane defined by

$$
\begin{equation*}
\frac{d y}{d x}=\frac{b}{a} \tag{1}
\end{equation*}
$$

the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d u}{d x}=0 . \tag{2}
\end{equation*}
$$

Solve equation (1), using ξ for the characteristic coordinate.

$$
y=\frac{b}{a} x+\xi \quad \rightarrow \quad \xi=y-\frac{b}{a} x
$$

Then solve equation (2) by integrating both sides with respect to x.

$$
u(x, \xi)=F(\xi)
$$

Now that u is known, change back to the original variables.

$$
u(x, y)=F\left(y-\frac{b}{a} x\right)
$$

